


Before going in…. 2

* Presentation slides are available at:
(jordan7186.github.io/presentations/)

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

On the representational power of graph 
neural networks (Current session)

A graph signal processing viewpoint of 
graph neural networks

On the problem of oversmoothing and 
oversquashing

Fundamental topics on graph neural networks

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Wrap-up: Message passing all the way up
(Up-to-date comprehensive survey on GNN archtiectures)

(Some of the topics may change in the future for a better alternative)



Objectives 3

1. Understanding of what makes two graphs the ‘same’
2. Understanding of the Weisfeiler-Lehman isomorphism test
3. Understanding the connection between the WL test and message-passing
4. In-depth understanding of (Xu et al., ICLR 2019) and (Morris et al., AAAI 2019)

*Today’s topic is more relevant on chemical datasets, where the model needs to extract 
as much information as possible from the given graph structure.
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What makes two graphs the ‘same’?



(Revisit) Graphs as an abstract datatype 5

Graphs are an abstract type of data where nodes (entities) are connected by edges (connections)

Edge

Node

(Optional)
Node features / attributes

(Optional)
Edge features / attributes

Edge

Node

(Optional)
Node features / attributes

(Optional)
Edge features / attributes

Undirected graph Directed graph

For now, let’s assume we do not consider node / edge features.

Only looking at the ‘graph structure’ (roughly speaking, connection patterns), how do we determine
whether two graphs are the same?



Example 1 6

vs.



Example 2 7

vs.



Example 3 8

vs.



Isomorphism (a fancy word for identical graphs) 9

vs.

1

2 3

5

4

Assign arbitrary node ordering
- Graphs with canonical node ordering 

is not common
- Related research topic: Positional 

encoding of nodes
(As an example, see [1] )

Remember, there are no ‘correct’ node ordering.

8 9

6 5

1 3

2 4

Whatever the definition of ‘isomorphism’ is, 
it must not care aboud node orderings

This means, G1 and G2 are isomorphic since we can find a bijection of:

3 – 8
1 – 9
4 – 6
2 – 5

and according to this node mapping, the edge set from G1 exactly
translates to G2.

[1] (Definition) Morris et al., Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, AAAI 2019



The practical problem of graph isomorphism test 10

vs.

The problem of graph isomorphism testing is suspected to be *NP-hard [2], [3]

• Probably no exact (deterministic) polynomial-time algorithmic solutions
• WL isomorphism test: A heuristic algorithm to test isomorphism

[2] Huang & Villar, “A short tutorial on the Weisfeiler-Lehman test and its variants”, ICASSP 2021
[3] David Bieber, “The Weisfeiler-Lehman Isomorphism Test” (Blog post)
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Understanding the WL-isomorphism test



One iteration of the WL-isomorphism test [1], [2] 12

Graph 1

Graph 2

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)

Q. Is there a systematic (heuristic) method that can “mostly” identify isomorphic graphs?



One iteration of the WL-isomorphism test [1], [2] 13

Graph 1

Graph 2

1
Color nodes †appropriately

(Initial iteration only)

†As suggested by [4], color node according to the node degree. Or just start with a uniform coloring

Graphs with node features: Also appropriately

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2] 14

†Multiset is a set that allows multiple duplicates of elements

Graph 1

Graph 2

2
Acquire †multiset of colors

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2] 15

†Multiset is a set that allows multiple duplicates of elements

Graph 1

Graph 2

2
Acquire †multiset of colors

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2] 16

†Multiset is a set that allows multiple duplicates of elements

Graph 1

Graph 2

3
Make a set by including self

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2] 17

† At least injective. The function has multiple names, such as hashing functions, relabeling functions, etc. 

Graph 1

Graph 2

4
Map each set to a new color by a †bijective function

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2] 18

Graph 1

Graph 2

5
Get the colors of the next iteration

[4] Shervashidze et al., “Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



WL-isomorphism test: Three example cases 19

WL test WL test WL test

? ? ?

Case 1 Case 2 Case 3



WL-isomorphism test: Three example cases 20

Counclusion of case 1

Graph 1

Graph 2

i=0

i=0

i=C

i=C

Different color distribution = Fail isomorphism test



WL-isomorphism test: Three example cases 21

Counclusion of case 2

Graph 1

Graph 2

i=0 i=C

i=0 i=C

i=∞

i=∞

*Stable coloring

Conclusion: Two graphs are isomorphic ..?

* We do not actually need to run the iteration to the end of time: If color distributions remain unchanged for two consecutive iterations, 
you already reached stable coloring (hint: Use induction). Also, C is bounded by max(|Graph 1|, |Graph 2|) (see [5]).



WL-isomorphism test: Three example cases 22

Counclusion of case 3

Graph 1

Graph 2

i=0

i=0

i=1

i=1

i=∞

i=∞

Stable coloring Still the same color distribution

Conclusion: Two graphs are isomorphic       Cannot determine
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Understanding the connection between the WL test and message-passing



(Recap) Message-passing framework in GNNs 24

Aggregate and Transform

MLP

Aggregation
Transform



Relation between WL and GNNs 25

“Color refinement” in WL

1. Aggregate 2. Transform

Message passing in GNNs

MLP
&

Can you see the similarity?



Relation between WL and GNNs 26

Color refinement in WL

Message passing in GNNs

Collect neighbor information



Relation between WL and GNNs 27

Color refinement in WL

Message passing in GNNs

Map self & neighbor information 
to next iteration



Revisiting the WL-isomorphism test: Computation tree point of view 28

Revisiting Case 3

The same intuition can also be derived from the “computational tree” point of view [6].

[6] Sato et al., “Random Features Strengthen Graph Neural Networks”, SDM 2021



Consequences of GNN’s ability to differentiate graphs 29

Color refinement in WL Message passing in GNNs

•  hash  : Fixed bijective function (at least injective)

•          : *A neural network (Learned from data)
• (Probably) Not bijective nor injective

Loss of expressive power: Cannot distinguish some elements



Consequences of GNN’s ability to differentiate graphs 30

Color refinement in WL

Message passing in GNNs

Space of *general functions
(Expressed by neural networks)

Most functions

GNNs are at best 1-WL
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In-depth understanding of (Xu et al., ICLR 2019) and (Morris et al., AAAI 2019)



GNNs cannot exceed WL in terms of its expressivity 32

Color refinement in 1-WL

Message passing in GNNs

Theorem [Morris et al., 2019, Xu et al., 2019] (informal) 

If the 1-WL test cannot distinguish two graphs, then any GNNs also cannot distinguish them.

If GNNs can distinguish two graphs, the 1-WL test can also distinguish them. 

In other words, the expressive power of GNNs is capped by 1-WL.



GNNs cannot exceed WL in terms of its expressivity 33

Proof of existence How to go beyond?

Theorem (informal)
There exists weight parameters of GNN such 
that, expressivity of GNNs exactly match 1-WL 
test.

Problem: GNNs are bound by 1-dim WL-test

Solution: Make GNNs based on k-dim WL-test
(k > 1)



GNNs cannot exceed WL in terms of its expressivity 34

Space of *general functions
(Expressed by neural networks)

Most functions

Q. What design choices are needed to make the function *injective as possible?

1. Use summation for aggregation 2. Use at least 2 layers of MLP

[1, 0]
[0, 1]

[4, 2] [2/3, 1/3]
[1, 0]

[0, 1]
or

Theorem [Xu et al., 2019] (informal) 

One-layer ReLU MLPs are not injective.

* Does not necessarily mean the resulting neural network is injective.
For injectivity in neural networks, see Puthawala et al., “Globally Injective ReLU Networks”, J. Mach. Learn. Res. (2020)



GNNs cannot exceed WL in terms of its expressivity 35

Space of *general functions
(Expressed by neural networks)

Most functions

Q. What design choices are needed to make the function *injective as possible?

Graph Isomorphism Networks (GIN)

*In my experience, just setting epsilon as a non-learnable pararmeter with 0 value works fine



Takeaways 36

1. Defining graphs being ‘identical’ = isomorphism test

2. WL-isomorphism test: Heuristic that can be used for isomorphism, but not 100% work

3. Connections: GNN’s message-passing and WL test, and GNN’s limitations
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Thank you!
Please feel free to ask any questions :)

jordan7186.github.io


